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Last time: Rendering Equation
Recursive description of incident illumination 
Difficult to integrate; tour de force of numerical integration 
Leads to lots of sophisticated integration strategies: 
- sampling strategies 
- variance reduction 
- Markov chain methods 
- ... 
Today: get a glimpse of these ideas 
Also valuable outside rendering! 
- E.g., innovations coming from geometry processing/meshing
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Review: Monte Carlo Integration
any function

any domain

(Not just talking about 
rendering here, folks!)Want to integrate:

General-purpose hammer: Monte-Carlo integration

under mild 
conditions on f volume of 

the domain
uniformly random 
samples of domain 

� ���

� (�)
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Review: Expected Value (DISCRETE)
A discrete random variable X has n possible outcomes xi, 
occuring w/ probabilities 0≤ pi ≤1,  p1 + … + pn=1

expected value

probability of event i

value of event i

E.g., what’s the expected value for a fair coin toss?

p2 = 1/2 
x2 = 0

p1 = 1/2 
x1 = 1

(just the “weighted average”!)
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Review: Continuous Random Variables
A continuous random variable X takes values x anywhere in a set Ω

Probability density p gives probability x appears in a given region.

� ���

�(�)
E.g., probability you fall asleep at time t in a 15-462 lecture:

cool motivating 
examples

professor is making 
dumb jokes

theory more theory

class ends

probability you fall asleep exactly 
at any given time t is ZERO!

can only talk about chance 
of falling asleep in a given 

interval of time
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Review: Expected Value (CONTINUOUS)
Expected value of continuous random variable again just 
the “weighted average” with respect to probability p:

expected value

probability density at point x

E.g., expected time of falling asleep?

� ���

�(�)
µ = 44.9 minutes

(is this result counter-intuitive?)

sometimes just use “µ” (for “mean”)
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Flaw of Averages
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Review: Variance
Expected value is the “average value” 
Variance is how far we are from the average, on average!

DISCRETE CONTINUOUS

Standard deviation σ is just the square root of variance

(any more intuitive?)

� ���

�(�) µ = 44.9 minutes

σ = 15.8 minutes



 CMU 15-462/662, Fall 2016

Variance Reduction in Rendering

higher variance lower variance
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Q: How do we reduce variance?
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Variance Reduction Example

0 2

2

Q: What’s the expected value of the integrand f?

A: Just by inspection, it’s 1/2 (half white, half black!).

Q: What’s its variance?

A: (1/2)(0-1/2)2 + (1/2)(1-1/2)2 = (1/2)(1/4) + (1/2)(1/4) = 1/4

Q: How do we reduce the variance?
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That was a trick question. 

You can’t reduce variance of the integrand! 
Can only reduce variance of an estimator.
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Variance of an Estimator
An “estimator” is a formula used to approximate an 
integral 
Most important example: our Monte Carlo estimate:

true integral Monte Carlo estimate

Get different estimates for different collections of samples 
Want to reduce variance of estimate across different samples 
Why? Integral itself only has one value! 
Many, many (many) techniques for reducing variance 
We will review some key examples for rendering
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Bias & Consistency
Two important things to ask about an estimator 
- Is it consistent? 
- Is it biased? 
Consistency: “converges to the correct answer” 

Unbiased: “estimate is correct on average” 

Consistent does not imply unbiased!

true integral

estimate

# of samples

expected value ...even if n=1! (only one sample)
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Example 1: Consistent or Unbiased?
My estimator for the integral over an image: 
- take n = m x m samples at fixed grid points 
- sum the contributions of each box 
- let m go to ∞

m = 4 m = 16 m = 64 m = ∞

Is this estimator consistent?  Unbiased?
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Example 2: Consistent or Unbiased?
My estimator for the integral over an image: 
- take only a single random sample of the image (n=1) 
- multiply it by the image area 
- use this value as my estimate

Is this estimator consistent?  Unbiased?
(What if I then let n go to ∞?)
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Why does it matter?

consistent + unbiased

biased + inconsistent

biased + consistent

computation time

error

Rule of thumb: unbiased estimators have more predictable behavior / fewer 
parameters to tweak to get correct result (which says nothing about performance...)
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Consistency & Bias in Rendering Algorithms
method consistent? unbiased?

rasterization* NO NO

path tracing ALMOST ALMOST

bidirectional path tracing ??? ???

Metropolis light transport ??? ???

photon mapping ??? ???

radiosity ??? ???

*But very high performance!
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mirrored 
surface

Naïve Path Tracing: Which Paths Can We Trace?

“caustic” (focused light) 
from reflection

point light
eye

diffuse bounce

specular 
bounce

Q: What’s the probability we sample the reflected direction? 

Q: What’s the probability we hit a point light source? 

A: ZERO.

A: ZERO. 
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Naïve path tracing misses important phenomena! 
(Formally: the result is biased.)
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...But isn’t this example pathological? 
No such thing as point light source, perfect mirror.
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Real lighting can be close to pathological

small directional 
light source

near-perfect mirror

Still want to render this scene!
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Light has a very “spiky” distribution
Consider the view from each bounce in our disco scene:

view from camera

diffuse 
bounce

view from diffuse bounce 
mirrored ball (pink) covers small 

percentage of solid angle

specular 
bounce

view from specular bounce 
area light (white) covers small 

percentage of solid angle

Probability that a uniformly-sampled 
path carries light is the product of the 

solid angle fractions. (Very small!)

Then consider even more bounces...

light
ball

camera
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Just use more samples?

path tracing - 8192 samples/pixel

path tracing - 16 samples/pixel path tracing - 128 samples/pixel

how do we get here? (photo)
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We need better sampling strategies!
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Review: Importance Sampling
Simple idea: sample the integrand according to how much 
we expect it to contribute to the integral.

�

� (�)

complicated integrand

�

�(�)

our best guess for where the integrand is “big”

no reason to put lots of samples here! 
(don’t contribute much to integral)

naïve Monte Carlo:

(xi are sampled uniformly)

importance sampled Monte Carlo:

(xi are sampled proportional to p)

Q: What happens when p is proportional to f  (p = cf)?

“If I sample x more frequently, each sample 
should count for less; if I sample x less 
frequently, each sample should count for more.”
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Importance Sampling in Rendering

materials: sample important “lobes” illumination: sample bright lights

(important special case: perfect mirror!)

Q: How else can we re-weight our choice of samples?
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Path Space Formulation of Light Transport
So far have been using recursive rendering equation: 

Make intelligent “local” choices at each step (material/
lights) 
Alternatively, we can use a “path integral” formulation: 

Opens the door to intelligent “global” importance 
sampling. (But still hard!)

all possible paths
one particular path

how much “light” is carried by this path?

how much of path space does this path “cover”
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each bounce:

Unit Hypercube View of Path Space
Paths determined by a sequence of random values ξ in [0,1] 
Hence, path of length k is a point in hypercube [0,1]k 
“Just” integrate over cubes of each dimension k 
E.g., two bounces in a 2D scene:

eye

1st bounce 
θ1

2nd bounce θ2

ξ1

ξ2

( ξ1, ξ2 )

Each point is a path of length 2:

Total brightness of this image ⇔ 
total contribution of length-2 paths.
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How do we choose paths—and path lengths?
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Bidirectional Path Tracing
Forward path tracing: no control over path length (hits 
light after n bounces, or gets terminated by Russian 
Roulette) 
Idea: connect paths from light, eye (“bidirectional”) 

Importance sampling?  Need to carefully weight 
contributions of path according to sampling strategy. 
(Details in Veach & Guibas, “Bidirectional Estimators for 
Light Transport”)

x3
x4

x2

x1

x0



 CMU 15-462/662, Fall 2016

Bidirectional Path Tracing (Path Length=2)

standard (forward) path tracing direct lighting

visualize particles from light backward path tracing

fails for point light sources

fails for a pinhole camera
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Contributions of Different Path Lengths

final image
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Good paths can be hard to find!

bidirectional path tracing

Metropolis light transport (MLT)

Idea: 
Once we find a good path, 
perturb it to find nearby 
“good” paths.
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Metropolis-Hastings Algorithm (MH)
Standard Monte Carlo: sum up independent samples 
MH: take random walk of dependent samples (“mutations”) 
Basic idea: prefer to take steps that increase sample value 

If careful, sample distribution will be proportional to integrand 
- make sure mutations are “ergodic” (reach whole space) 

- need to take a long walk, so initial point doesn’t matter (“mixing”)

xi

x’

α := f(x’) / f(x)

if random xi in [0,1] < α: 
xi+1 = x’ 

else: 
xi+1 = xi

“transition 
probability”
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Metropolis-Hastings: Sampling an Image

short walk long walk (original image)

Want to take samples proportional to image density f 
Start at random point; take steps in (normal) random direction 
Occasionally jump to random point (ergodicity) 
Transition probability is “relative darkness” f(x’)/f(xi)
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Metropolis Light Transport

path tracing Metropolis light transport (same time)

x'x

Basic idea: mutate paths

(For details see Veach, “Robust Monte Carlo 
Methods for Light Transport Simulation”)
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Multiple Importance Sampling (MIS)
Many possible importance sampling strategies 
Which one should we use for a given integrand? 
MIS: combine strategies to preserve strengths of all of them 
Balance heuristic is (provably!) about as good as anything:

�

� (�)

�

��(�)

�

��(�)

kth importance densitytotal # of samples

sum over 
strategies

sum over 
samples

fraction of samples 
taken w/ kth strategy

jth sample taken 
with ith strategy

Still, several improvements possible 
(cutoff, power, max)—see Veach & Guibas.
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Multiple Importance Sampling: Example

sample materials sample lightsmultiple importance sampling 
(power heuristic)
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Ok, so importance is important. 

But how do we sample our 
function in the first place?
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Sampling Patterns & Variance Reduction
Want to pick samples according to a given density 
But even for uniform density, lots of possible sampling 
patterns 

nonuniform sampling densityuniform sampling density
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Stratified Sampling
How do we pick n values from [0,1]? 
Could just pick n samples uniformly at random 
Alternatively: split into n bins, pick uniformly in each bin

1
8

1
4

3
8

1
2

5
8

3
4

7
8 1

uniform

1
8

1
4

3
8

1
2

5
8

3
4

7
8

stratified

large gaps!

FACT: stratified estimate never has larger variance (often lower)
f(x)

x

f(x)

x

Intuition: each stratum has smaller variance.  (Proof by linearity of expectation!)



 CMU 15-462/662, Fall 2016

Stratified Sampling in Rendering/Graphics
Simply replacing uniform samples with stratified ones 
already improves quality of sampling for rendering (…and 
other graphics/visualization tasks!)

uniform

“more clumpy”

stratified

“more even”

See especially: Jim Arvo, “Stratified Sampling of Spherical Triangles” (SIGGRAPH 1995)
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Low-Discrepancy Sampling
“No clumps” hints at one possible criterion for a good 
sample: 
Number of samples should be proportional to area 
Discrepancy measures deviation from this ideal 

See especially: Dobkin et al, “Computing Discrepancy w/ Applications to Supersampling” (1996)

discrepancy of sample 
points X over a region S

area of S
total # of 

samples in X

number of samples 
in X covered by S

overall discrepancy of X

some family of regions S (e.g., boxes, disks, ...)(ideally equal to zero!)
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Quasi-Monte Carlo methods (QMC)
Replace truly random samples with low-discrepancy 
samples 
Why? Koksma’s theorem: total variation of f 

(integral of |f’|)

discrepancy 
of sample X

sample points in X

I.e., for low-discrepancy X, estimate approaches integral 
Similar bounds can be shown in higher dimensions 
WARNING: total variation not always bounded! 
WARNING: only for family F of axis-aligned boxes S! 
E.g., edges can have arbitrary orientation (coverage) 
Discrepancy still a very reasonable criterion in practice
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Hammersley & Halton Points
Can easy generate samples with near-optimal discrepancy  
First define radical inverse φr(i) 
Express integer i in base r, then reflect digits around decimal 
E.g., φ10(1234) = 0.4321 
Can get n Halton points x1, …, xn in k-dimensions via 

Similarly, Hammersley sequence is kth prime number

n must be known ahead of time!

Halton Hammersley
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Wait, but doesn’t a regular grid 
have really low discrepancy...?
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There’s more to life than discrepancy
Even low-discrepancy patterns can exhibit poor behavior:

Want pattern to be anisotropic (no preferred direction) 
Also want to avoid any preferred frequency (see above!)
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Blue Noise - Motivation
Yellott observed that monkey retina exhibits blue noise 

“blue noise”

No obvious preferred directions (anisotropic) 
What about frequencies?
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Blue Noise - Fourier Transform
Can analyze quality of a sample pattern in Fourier domain

wavelength x

w
av

el
en

gt
h 

y

Fourier transform pattern

w
av

el
en

gt
h 

y
wavelength x

Fourier transform pattern

Regular pattern has “spikes” at regular intervals 
Blue noise is spread evenly over all frequencies in all directions 
bright center “ring” corresponds to sample spacing
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Spectrum affects reconstruction quality

sa
m

pl
e p

at
te
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ne
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la
te

(from Balzer et al 2009)
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Poisson Disk Sampling
How do you generate a “nice” sample? 
One of the earliest algorithms: Poisson disk sampling 
Iteratively add random non-overlapping disks (until no space 
left)

Decent spectral quality, but we can do better.
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Lloyd Relaxation
Iteratively move each  disk to the center of its neighbors

Better spectral quality, slow to converge.  Can do better yet...
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Voronoi-Based Methods
Natural evolution of Lloyd 
Associate each sample with set of closest points (Voronoi cell) 
Optimize qualities of this Voronoi diagram 
E.g., sample is at cell’s center of mass, cells have same area, 

Voronoi centroidal equal area
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Adaptive Blue Noise
Can adjust cell size to sample a given density (e.g., 
importance)

Computational tradeoff: expensive* precomputation / efficient sampling.

*But these days, not that expensive...
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How do we efficiently sample 
from a large distribution?
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Sampling from the CDF

To randomly select an event, 
select         if

Uniform random variable

Cost? O(n log n)

e.g., # of pixels in an 
environment map (big!)
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Alias Table
Get amortized O(1) sampling by building “alias table” 
Basic idea: rob from the rich, give to the poor  (O(n)):

1

2

3

4

5

6

7

x1 x2 x3 x4

x1

x2

x2
x3

x4
x4

x4

Table just stores two identities & ratio of heights per column 
To sample: 

pick uniform # between 1 and n 
biased coin flip to pick one of the two identities in nth column
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Ok, great! 
Now that we’ve mastered Monte Carlo 

rendering, what other techniques are there?
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Photon Mapping
Trace particles from light, deposit “photons” in kd-tree 
Especially useful for, e.g., caustics, participating media 

Interestingly enough, Voronoi diagrams 
also used to improve photon distribution!

(from Spencer & Jones 2013)
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Finite Element Radiosity
Very different approach: transport between patches in 
scene 
Solve large linear system for equilibrium distribution 
Good for diffuse lighting; hard to capture other light paths
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Consistency & Bias in Rendering Algorithms
method consistent? unbiased?

rasterization NO NO

path tracing ALMOST ALMOST

bidirectional path tracing YES YES

Metropolis light transport YES YES

photon mapping YES NO

radiosity NO NO
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Can you certify a renderer?
Grand challenge: write a renderer that comes with a 
certificate (i.e., provable, formally-verified guarantee) that 
the image produced represents the illumination in a scene. 
Harder than you might think! 
Inherent limitation of sampling: you can never be 100% 
certain that you didn’t miss something important.

eye

sun
pinhole

Can always make sun brighter, hole smaller...!
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Moment of Zen


