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Reflection
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Ray tracer measures radiance along a ray

Pinhole
o,d

o,d x

y

In the ray tracing algorithms we’ve discussed so far: want to measure 
radiance traveling in the direction opposite the ray direction.
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Ray tracer measures radiance along a ray

Pinhole
o,d

o,d x

y

Radiance entering camera in direction d = light from scene light sources 
that is reflected off surface in direction d. 



 CMU 15-462/662, Fall 2015

Reflection models

▪ Definition: reflection is the process by which light incident on 
a surface interacts with the surface such that it leaves on the 
incident (same) side without change in frequency
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Categories of reflection functions
▪ Ideal specular 

▪ Ideal diffuse 

▪ Glossy specular 

▪ Retro-reflective

Diagrams illustrate how incoming light energy from 
given direction is reflected in various directions.

Perfect mirror

Uniform reflection in all directions

Reflects light back toward source

Majority of light distributed in 
reflection direction
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Materials: diffuse
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Materials: plastic



 CMU 15-462/662, Fall 2015

Materials: red semi-gloss paint
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Materials: Ford mystic lacquer paint
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Materials: mirror
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Materials: gold



 CMU 15-462/662, Fall 2015

Materials
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dE(!i)

dLr(!r) / dEi(!i)

Bidirectional reflectance distribution function 
(BRDF)

Differential irradiance landing on surface from differential cone of directions dLr(!r) / dEi(!i)
dE(!i) = dL(!i)cos ✓i

Differential radiance reflected in direction            (due to differential irradiance from         ) dLr(!r) / dEi(!i)

dLr(!r)
dLr(!r) / dEi(!i)
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fr(!i ! !r) =
dLr(!r)

dEi(!i)
=

dLr(!r)

dLi(!i) cos ✓i


1

sr

�

Bidirectional reflectance distribution function 
(BRDF)

BRDF defines the fraction of energy arriving from         that is reflected in the direction dLr(!r) / dEi(!i)dLr(!r) / dEi(!i)
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The reflection equation

Lr(p,!r) =

Z

H2

fr(p,!i ! !r)Li(p,!i) cos ✓i d!i

dLr(!r) = fr(!i ! !r) dLi(!i) cos ✓i
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Solving the reflection equation

▪ Basic Monte Carlo estimate: 
- Generate directions        sampled from some distribution 

- To reduce variance            should match BRDF or incident 
radiance function 

- Compute the estimator

Lr(p,!r) =

Z

H2

fr(p,!i ! !r)Li(p,!i) cos ✓i d!i

!j p(!)

1

N

NX

j=1

fr(p,!j ! !r)Li(p,!j) cos ✓j
p(!j)

p(!)
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Estimating reflected light

// Assume: 

//   Ray ray hits surface at point hit_p 

//   Normal of surface at hit point is hit_n 

Vector3D wr = -ray.d;   // outgoing direction 

Spectrum Lr = 0.; 

for (int i = 0; i < N; ++i) { 

    Vector3D wi;        // sample incident light from this direction 

    float pdf;          // p(wi) 

    generate_sample(brdf, &wi, &pdf);     // generate sample according to brdf 

    Spectrum f = brdf->f(wr, wi); 

    Spectrum Li = trace_ray(Ray(hit_p, wi));  // compute incoming Li 
    Lr += f * Li * fabs(dot(wi, hit_n)) / pdf; 

} 

return Lr / N;
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Properties of BRDFs
▪ Linearity 

▪ Reciprocity principle

[Sillion et al. 1990]

fr(!r ! !i) = fr(!i ! !r)
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Properties of BRDFs
▪ Isotropic vs. anisotropic 

- If isotropic, 
- Then, from reciprocity, 

fr(✓i,�i; ✓r,�r) = fr(✓i, ✓r,�r � �i)

fr(✓i, ✓r,�r � �i) = fr(✓r, ✓i,�i � �r) = fr(✓i, ✓r, |�r � �i|)
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Energy conservation

fr(!i ! !r) =
dLr(!i ! !r)

dEi


1

sr

�

d�r

d�i
=

R
⌦r

Lr(!r) cos ✓r d!rR
⌦i

Li(!i) cos ✓i d!i

=

Z

⌦r

Z

⌦i

fr(!i ! !r)Li(!i) cos ✓id!i cos ✓r d!rR
⌦i

Li(!i) cos ✓i d!i

 1

Outgoing energy cannot exceed incoming energy 
(reflection does not create energy)
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Energy conservation

⇢ =

R
H2

R
H2 fr(!i ! !r)C cos ✓id!i cos ✓r d!rR

H2 C cos ✓id!i

=

1

⇡

Z

H2

Z

H2

fr(!i ! !r)C cos ✓id!i cos ✓r d!r

 1

Overall fraction of light reflected by surface 
(assuming constant incident light from all directions)
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Hemispherical incident radiance

Consider view of hemisphere from this point
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Hemispherical incident radiance

At any point on any surface in the scene, 
there’s an incident radiance field that 
gives the directional distribution of 
illumination at the point

x

y

Li(!) = Li(x, y,
p

1� x

2 � y

2)

(0,0)
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Ideal specular reflection

Incident radiance Exitant radiance
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Diffuse reflection

Incident radiance Exitant radiance

Exitant radiance is the same in all directions
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Plastic

Incident radiance Exitant radiance
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Copper

Incident radiance Exitant radiance
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Perfect specular reflection

[Zátonyi Sándor]
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Perfect specular reflection
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Top-down view 
(looking down on surface)
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Specular reflection BRDF
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Specular reflection and the reflection equation
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Whitted’s ray tracing method!
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Transmission
In addition to reflecting off surface, light may 
be transmitted through surface. 

Light refracts when it enters a new medium.
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Snell’s Law

~n!i

!t

⌘i sin ✓i = ⌘t sin ✓t

Transmitted angle depends on index of refraction of medium incident ray is in 
and index of refraction of medium light is entering.

Vacuum 
Air (sea level) 
Water (20°C) 
Glass 
Diamond

1.0 
1.00029 
1.333 
1.5-1.6 
2.42

⌘Medium *

* index of refraction is wavelength 
dependent (these are averages)



 CMU 15-462/662, Fall 2015

Law of refraction
~n!i

!t

Total internal reflection: 
When light is moving from a more optically dense 
medium to a less optically dense medium: 

Light incident on boundary from large enough angle 
will not exit medium.

⌘i sin ✓i = ⌘t sin ✓t

1�
✓
⌘i
⌘t

◆2

(1� cos

2 ✓i) < 0

⌘i
⌘t

> 1

cos ✓t =
q

1� sin

2 ✓t

=

s

1�
✓
⌘i
⌘t

◆2

sin

2 ✓i

=

s

1�
✓
⌘i
⌘t

◆2

(1� cos

2 ✓i)



 CMU 15-462/662, Fall 2015

Optical manhole

Total internal reflection

[Livingston and Lynch]
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Fresnel reflection

This example: reflectance increases with grazing angle

[Lafortune et al. 1997]

Reflectance depends on angle of incidence and polarization of light
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Fresnel reflection (dielectric,    =1.5)⌘
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Fresnel reflectance (conductor)



 CMU 15-462/662, Fall 2015

Without Fresnel (fixed reflectance/transmission)
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Glass with Fresnel reflection/transmission
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Lambertian reflection
Assume light is equally likely to be reflected in each output direction

fr = c

Lo(!o) =

Z

H2

fr Li(!i) cos ✓i d!i

=fr

Z

H2

Li(!i) cos ✓i d!i

=frE

fr =
⇢

⇡
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Anisotropic reflection
Reflection depends on azimuthal angle �

Results from oriented microstructure of surface 
e.g., brushed metal 
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Measuring BRDFs



 CMU 15-462/662, Fall 2015

Measuring BRDFs: motivation
▪ Avoid need to develop / derive models 

- Automatically includes all of the scattering effects present 
▪ Can accurately render with real-world materials 

- Useful for product design, special effects, ... 
▪ Theory vs. practice:

[Bagher et al. 2012]
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Measuring BRDFs
▪ General approach:  

▪ Improving efficiency: 
- Isotropic surfaces reduce dimensionality from 4D to 3D 
- Reciprocity reduces # of measurements by half 
- Clever optical systems…

foreach outgoing direction wo 

    move light to illuminate surface with a thin beam from wo 

    for each incoming direction wi 

        move sensor to be at direction wi from surface 

        measure incident radiance
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Measuring BRDFs: gonioreflectometer

[Li et al. 2005]
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Image-based BRDF measurement

[Marschner et al. 1999]
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Challenges in measuring BRDFs
▪ Accurate measurements at grazing angles 

- Important due to Fresnel effects 
▪ Measuring with dense enough sampling to capture high 

frequency specularities 
▪ Retro-reflection 
▪ Spatially-varying reflectance, ...
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Representing measured BRDFs
▪ Desirable qualities 

- Compact representation 
- Accurate representation of measured data 
- Efficient evaluation for arbitrary pairs of directions 
- Good distributions available for importance sampling
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Tabular representation
▪ Store regularly-spaced 

samples in  
- Better: reparameterize 

angles to better match 
specularities 

▪ Generally need to resample 
measured values to table 

▪ Very high storage 
requirements

MERL BRDF Database 
[Matusik et al. 2004] 

90*90*180 measurements

(✓
i

, ✓
o

, |�
i

� �
o

|)
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▪ Can fit existing models, e.g. Cook-Torrance, 3 parameters per 
wavelength,  

▪ More sophisticated, e.g. [Bagher et al. 2012] 11 parameter 
model:

Basis functions

f
r

(!
i

! !
o

) = k
d

+ k
s

(~h · ~n)ke ~h = \!
i

+ !
o

kd, ks, ke



 CMU 15-462/662, Fall 2015

Simulation: velvet

[Westin et al. 1992]
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Simulation: brushed aluminum

[Westin et al. 1992]
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Simulation: nylon

[Westin et al. 1992]
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Translucent materials: Jade
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Translucent materials: skin
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Translucent materials: leaves
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Subsurface scattering
▪ Visual characteristics of many 

surfaces caused by light entering at 
different points than it exits 
- Violates a fundamental 

assumption of the BRDF
[Jensen et al 2001]

[Donner et al 2008]
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▪ Generalization of BRDF; describes exitant radiance at one 
point due to incident differential irradiance at another point:

Scattering functions

S(x
i

,!

i

, x

o

,!

o

)

▪ Generalization of reflection equation integrates over all 
points on the surface and all directions(!)

L(xo,!o) =

Z

A

Z

H2

S(xi,!i, xo,!o)Li(xi,!i) cos ✓i d!i dA
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BRDF
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BSSRDF
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Fiber model

[Marschner et al. 2003]
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Hair appearance
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Summary
▪ BRDF describes how light reflects off a surface 

▪ BRDF defines the fraction of energy incident on surface from 
direction        that is reflected in the direction 

▪ Light is also transmitted through surfaces 
- Snell’s Law gives angle of transmitted ray 
- Amount of light reflected/transmitted is computed via Fresnel equations 
- Can think of BTDF (bidirectional transmission distribution function) describing 

directional distribution of transmission 

▪ Subsurface scattering 
- Light exits surface at different point than it entered (e.g., skin)

dLr(!r) / dEi(!i)dLr(!r) / dEi(!i)


