Lecture 9: Geometric Queries

Computer Graphics CMU 15-462/15-662, Fall 2015

Assignment 2, Part II is out!

Last time: Geometry Processing

- **Extend signal processing to curved shapes**
 - encounter familiar issues (sampling, aliasing, etc.)
 - some new challenges (irregular sampling, no FFT, etc.)
 - Focused on resampling triangle meshes
 - local: edge flip, split, collapse
 - global: subdivision, quadric error, isotropic remeshing
 - Today: what kind of geometric queries *can't* we answer yet?

Simplification via Quadric Error Metric

- **One popular scheme: iteratively collapse edges**
- Which edges? Assign score with *quadric error metric**
 - approximate distance to surface as sum of distance to aggregated triangles
 - iteratively collapse edge with smallest score
 - greedy algorithm... great results!

*invented here at CMU! (Garland & Heckbert 1997)

Quadric Error Metric

- Approximate distance to a collection of triangles
- Distance is sum of point-to-plane distances
 - Q: Distance to plane w/ normal N passing through point p?
 - A: N•(x-p), i.e., project difference onto normal
- Sum of distances:

Quadric Error - Homogeneous Coordinates

- Suppose in coordinates we have
 - a query point (x,y,z)
 - a normal (a,b,c)
 - an offset d := -(p,q,r) (a,b,c)
- Then in homogeneous coordinates, let
 - u := (x, y, z, 1)
 - v := (a, b, c, d)
 - Signed distance to plane is then just u -v = ax+by+cz+d
 - Squared distance is $(u^Tv)^2 = u^T(vv^T)u =: u^TKu$
 - Key idea: matrix K encodes distance to plane
 - K is symmetric, contains 10 unique coefficients (small storage)

 $\mathbf{F}_{K} = \begin{bmatrix} a^2 & ab & ac & ad \\ ab & b^2 & bc & bd \\ ac & bc & c^2 & cd \\ ad & bd & cd & d^2 \end{bmatrix}$

Quadric Error of Edge Collapse

- How much does it cost to collapse an edge?
- Idea: compute edge midpoint, measure quadric error

Better idea: use point that *minimizes quadric error* as new point! Q: How do we minimize quadric error?

Review: Minimizing a Quadratic Function

- Suppose I give you a function f(x) = ax²+bx+c
- Q: What does the graph of this function look like?
- Could also look like this!
- Q: How do we find the *minimum*?
- A: Look for the point where the function isn't changing (if we look "up close")
- I.e., find the point where the *derivative* vanishes

$$f'(x) = 0$$

$$2ax + b = 0$$

x = -b/2a

(What about our second example?)

⊦bx+c look like?

isn't vanishes

Minimizing a Quadratic Form

- A *quadratic form* is just a generalization of our quadratic polynomial from 1D to nD
 - E.g., in 2D: $f(x,y) = ax^2 + bxy + cy^2 + dx + ey + g$
- Can always (always!) write quadratic polynomial using a *symmetric* matrix (and a vector, and a constant):

$$f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

 $= \mathbf{x}^{\mathsf{T}} A \mathbf{x} + \mathbf{u}^{\mathsf{T}} x + g$ (this expression works for *any* n!)

- Q: How do we find a critical point (min/max/saddle)?
- A: Set derivative to zero! $2A\mathbf{x} + \mathbf{u} = 0$

(Can you show this is true, at least in 2D?)

$+ \left[\begin{array}{cc} d & e \end{array} \right] \left| \begin{array}{c} x \\ y \end{array} \right| + g$

Positive Definite Quadratic Form

- Just like our 1D parabola, critcal point is *not* always a min!
- Q: In 2D, 3D, nD, when do we get a *minimum*?
- A: When matrix A is positive-definite:
 - 1D: Must have $xax = ax^2 > 0$. In other words: a is positive!
 - 2D: Graph of function looks like a "bowl":

positive definite

positive semidefinite

Positive-definiteness is *extremely important* in computer graphics: it means we can find a minimum by solving linear equations. Basis of many, many modern algorithms (geometry processing, simulation, ...).

$\mathbf{x}^{\mathsf{T}} A \mathbf{x} > 0 \quad \forall \mathbf{x}$

indefinite

Minimizing Quadratic Error

- Find "best" point for edge collapse by minimizing quad. form $\min \mathbf{u}^{\mathsf{T}} K \mathbf{u}$
- Already know fourth (homogeneous) coordinate is 1!
- So, break up our quadratic function into two pieces:

- $= \mathbf{x}^{\mathsf{T}} B \mathbf{x} + 2 \mathbf{w}^{\mathsf{T}} \mathbf{x} + d^2$
- Now we have a quadratic form in the 3D position x.
- **Can minimize as before:**

 $2B\mathbf{x} + 2\mathbf{w} = 0$

(Q: Why should B be positive-definite?)

Quadric Error Simplification: Final Algorithm

- **Compute K for each triangle (distance to plane)**
- Set K at each vertex to sum of Ks from incident triangles
- Set K at each edge to sum of Ks at endpoints
- Find point at each edge minimizing quadric error
 - Until we reach target # of triangles:
 - collapse edge (i,j) with smallest cost to get new vertex m
 - add K_i and K_j to get quadric K_m at m
 - update cost of edges touching m
 - More details in assignment writeup!

Isotropic Remeshing

Conceptually much simpler algorithm
 More detail in the assignment writeup!

*Based on Botsch & Kobbelt, "A Remeshing Approach to Multiresolution Modeling"

Demo: Danger of Resampling

(Q: What happens with an image?)

But wait: we have the original mesh. Why not just project each new sample point onto the closest point of the original mesh?

Geometric Queries

- Q: Given a point, in space (e.g., a new sample point), how do we find the closest point on a given surface?
 - Q: Does implicit/explicit representation make this easier?
 - Q: Does our halfedge data structure help?
 - Q: What's the cost of the naïve algorithm?
 - Q: How do we find the distance to a single triangle anyway?
- So many questions!

Many types of geometric queries

- Already identified need for "closest point" query
- Plenty of other things we might like to know:
 - Do two triangles intersect?
 - Are we inside or outside an object?
 - **Does one object contain another?**

 - Data structures we've seen so far not really designed for this...
- **Need some new ideas!**
- **Today: come up with simple (read: slow) algorithms.**
- Next lecture: intelligent ways to accelerate geometric queries.

Warm up: closest point on point

- Goal is to find the point on a mesh closest to a given point.
- Much simpler question: given a query point (p1,p2), how do we find the closest point on the point (a1,a2)?

Bonus question: what's the distance?

```` (a1, a2)

Slightly harder: closest point on line

- Now suppose I have a line $N^{T}x = c$, where N is the unit normal
- How do I find the point closest to my query point p?

 $\Rightarrow \mathbf{p} + t\mathbf{N} = |\mathbf{p} + (c - \mathbf{N}^T \mathbf{p})\mathbf{N}|$

Harder: closest point on line segment

- Two cases: endpoint or interior
- Already have basic components:
 - point-to-point
 - point-to-line
 - Algorithm?
 - find closest point on line
 - check if it's between endpoints
 - if not, take closest endpoint
 - How do we know if it's between endpoints?
 - write closest point on line as a+t(b-a)
 - if t is between 0 and 1, it's inside the segment!

Even harder: closest point on triangle

- What are all the possibilities for the closest point?
- Almost just minimum distance to three segments:

Question: what about a point inside the triangle?

triangle est point? segments:

Closest point on triangle in 3D

- Not so different from 2D case **Algorithm?**
 - project onto plane of triangle
 - use half-plane tests to classify point
 - if inside the triangle, we're done!
 - otherwise, find closest point on associated vertex or edge
 - By the way, how do we find closest point on plane?
- Same expression as closest point on a line! **E.g.**, $p + (c - N^{T}p)N$

Closest point on triangle *mesh* in 3D?

- **Conceptually easy:**
 - loop over all triangles
 - compute closest point to current triangle
 - keep globally closest point
 - Q: What's the cost? Does halfedge help?
 - What if we have *billions* of faces?
 - (Next time!)

Different query: ray-mesh intersection

- A "ray" is an oriented line starting at a point
- Think about a ray of light traveling from the sun
- Want to know where a ray pierces a surface
 Why?
 - GEOMETRY: inside-outside test
 - RENDERING: visibility, ray tracing
 - SIMULATION: collision detection
 - Might pierce surface in many places!

Intersecting a ray with an implicit surface

- Recall implicit surfaces: all points x such that f(x) = 0
- Q: How do we find points where a ray pierces this surface?
- Well, we know all points along the ray: r(t) = o + td
- Idea: replace "x" with "r" in 1st equation, and solve for t **Example: unit sphere**

$$f(\mathbf{x}) = |\mathbf{x}|^2 - 1$$
$$\Rightarrow f(\mathbf{r}(t)) = |\mathbf{o} + t\mathbf{d}|^2 - 1$$

$$\underbrace{|\mathbf{d}|^2}_{a} t^2 + \underbrace{2(\mathbf{o} \cdot \mathbf{d})}_{b} t + \underbrace{|\mathbf{o}|^2 - 1}_{c} = 0$$

$$t = \begin{vmatrix} -\mathbf{o} \cdot \mathbf{d} \pm \sqrt{(\mathbf{o} \cdot \mathbf{d})^2 - |\mathbf{o}|^2 + 1} \end{vmatrix}$$

quadratic formula:

Ray-plane intersection

- Suppose we have a plane $N^T x = c$
 - N unit normal
 - c offset
- How do we find intersection with ray r(t) = o + td? Key idea: again, replace the point x with the ray equation t: $\mathbf{N}^{\mathsf{T}}\mathbf{r}(t) = c$
- Now solve for t: $\mathbf{N}^{\mathsf{T}}(\mathbf{o} + t\mathbf{d}) = c$ And plug t back into ray equation: $r(t) = \mathbf{o} + \frac{c - \mathbf{N}^{\mathsf{T}}\mathbf{o}}{\mathbf{N}^{\mathsf{T}}\mathbf{d}}$

$\Rightarrow t = \frac{c - \mathbf{N}^{\mathsf{T}} \mathbf{o}}{\mathbf{N}^{\mathsf{T}} \mathbf{I}^{\mathsf{J}}}$

Ray-triangle intersection

- Triangle is in a plane...
- Not much more to say!
 - Compute ray-plane intersection
 - Q: What do we do now?
 - A: Why not compute barycentric coordinates of hit point?
 - If barycentric coordinates are all positive, point in triangle

Actually, a *lot* more to say... if you care about performance!

[PDF] Optimizing Ray-Triangle Intersection via Automated Search www.cs.utah.edu/~aek/research/triangle.pdf - University of Utah by A Kensler - Cited by 33 - Related articles

method is used to further optimize the code produced via the fitness function. ... For these 3D methods we optimize ray-triangle intersection in two different ways.

^[PDF] Comparative Study of Ray-Triangle Intersection Algorithms

www.graphicon.ru/html/proceedings/2012/.../gc2012Shumskiy.pdf by V Shumskiy - Cited by 1 - Related articles optimized SIMD ray-triangle intersection method evaluated on. GPU for path-tracing CMU 15-462/662, Fall 2015

Why care about performance?

Intel Embree

NVIDIA OptiX

Why care about performance?

"Brigade 3" real time path tracing demo

One more query: mesh-mesh intersection

GEOMETRY: How do we know if a mesh intersects itself?
 ANIMATION: How do we know if a collision occurred?

intersection htersects itself? on occurred?

Warm up: point-point intersection

- Q: How do we know if p intersects a?
- A: ...check if they're the same point!

(p1, p2)

Sadly, life is not always so easy.

(a1, a2)

Slightly harder: point-line intersection

Q: How do we know if a point intersects a given line?

A: ...plug it into the line equation!

p

$N^T x = c$

Finally interesting: line-line intersection

- Two lines: ax=b and cx=d
- **Q: How do we find the intersection?**
- A: See if there is a simultaneous solution

Degenerate line-line intersection?

- What if lines are almost parallel?
- Small change in normal can lead to big change in intersection!
- Instability very common, very important with geometric predicates. Demands special care (e.g., analysis of matrix).

Triangle-Triangle Intersection?

- Lots of ways to do it
- **Basic idea:**
 - Q: Any ideas?
 - One way: reduce to edge-triangle intersection
 - Check if each line passes through plane
 - Then do interval test
 - What if triangle is *moving*?
 - Important case for animation
- (a) Bounding volume of a deforming triangle

BV(

- Can think of triangles as prisms in time
- Will say more when we talk about animation!

(b) Bounding volume of a deforming vertex

(c) Bounding volume test

(d) Coplanarity test

Up Next: Spatial Acceleration Data Strucutres

- Testing every element is slow!
- E.g., linearly scanning through a list vs. binary search
- Can apply this same kind of thinking to geometric queries

binary search geometric queries