
Computer Graphics
CMU 15-462/15-662, Fall 2015

Lecture 9:

Geometric Queries

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Last time: Geometry Processing
Extend signal processing to curved shapes
- encounter familiar issues (sampling, aliasing, etc.)
- some new challenges (irregular sampling, no FFT, etc.)
Focused on resampling triangle meshes
- local: edge flip, split, collapse
- global: subdivision, quadric error, isotropic remeshing
Today: what kind of geometric queries can’t we answer yet?

 CMU 15-462/662, Fall 2015

Simplification via Quadric Error Metric
One popular scheme: iteratively collapse edges
Which edges? Assign score with quadric error metric*
- approximate distance to surface as sum of distance to

aggregated triangles
- iteratively collapse edge with smallest score
- greedy algorithm... great results!

*invented here at CMU! (Garland & Heckbert 1997)

30,000 3,000 300
30

#triangles:

 CMU 15-462/662, Fall 2015

Quadric Error Metric
Approximate distance to a collection of triangles
Distance is sum of point-to-plane distances
- Q: Distance to plane w/ normal N passing through point p?
- A: N•(x-p), i.e., project difference onto normal
Sum of distances:

p

x

N•(x-p)
N

N1

N2N3

N4

N5

p

 CMU 15-462/662, Fall 2015

Quadric Error - Homogeneous Coordinates
Suppose in coordinates we have
- a query point (x,y,z)
- a normal (a,b,c)
- an offset d := -(p,q,r) • (a,b,c)
Then in homogeneous coordinates, let
- u := (x,y,z,1)
- v := (a,b,c,d)
Signed distance to plane is then just u•v = ax+by+cz+d
Squared distance is (uTv)2 = uT(vvT)u =: uTKu
Key idea: matrix K encodes distance to plane
K is symmetric, contains 10 unique coefficients (small storage)

 CMU 15-462/662, Fall 2015

Quadric Error of Edge Collapse
How much does it cost to collapse an edge?
Idea: compute edge midpoint, measure quadric error

Better idea: use point that minimizes quadric error as new point!
Q: How do we minimize quadric error?

collapse

 CMU 15-462/662, Fall 2015

Review: Minimizing a Quadratic Function
Suppose I give you a function f(x) = ax2+bx+c
Q: What does the graph of this function look like?
Could also look like this!
Q: How do we find the minimum?
A: Look for the point where the function isn’t
changing (if we look “up close”)
I.e., find the point where the derivative vanishes

x

f(x)

x

f(x)

(What about our second example?)

 CMU 15-462/662, Fall 2015

Minimizing a Quadratic Form
A quadratic form is just a generalization of our quadratic
polynomial from 1D to nD
E.g., in 2D: f(x,y) = ax2 + bxy + cy2 + dx + ey + g
Can always (always!) write quadratic polynomial using a
symmetric matrix (and a vector, and a constant):

Q: How do we find a critical point (min/max/saddle)?
A: Set derivative to zero!

(this expression works for any n!)

(Can you show this is true, at least in 2D?)

 CMU 15-462/662, Fall 2015

Positive Definite Quadratic Form
Just like our 1D parabola, critcal point is not always a min!
Q: In 2D, 3D, nD, when do we get a minimum?
A: When matrix A is positive-definite:

1D: Must have xax = ax2 > 0. In other words: a is positive!
2D: Graph of function looks like a “bowl”:

Positive-definiteness is extremely important in computer
graphics: it means we can find a minimum by solving linear
equations. Basis of many, many modern algorithms
(geometry processing, simulation, ...).

positive definite positive semidefinite indefinite

 CMU 15-462/662, Fall 2015

Minimizing Quadratic Error
Find “best” point for edge collapse by minimizing quad. form

Already know fourth (homogeneous) coordinate is 1!
So, break up our quadratic function into two pieces:

Now we have a quadratic form in the 3D position x.
Can minimize as before:

(Q: Why should B be positive-definite?)

 CMU 15-462/662, Fall 2015

Quadric Error Simplification: Final Algorithm
Compute K for each triangle (distance to plane)
Set K at each vertex to sum of Ks from incident triangles
Set K at each edge to sum of Ks at endpoints
Find point at each edge minimizing quadric error
Until we reach target # of triangles:
- collapse edge (i,j) with smallest cost to get new vertex m
- add Ki and Kj to get quadric Km at m
- update cost of edges touching m
More details in assignment writeup!

 CMU 15-462/662, Fall 2015

Isotropic Remeshing
Conceptually much simpler algorithm
More detail in the assignment writeup!

*Based on Botsch & Kobbelt, “A Remeshing Approach to Multiresolution Modeling”

 CMU 15-462/662, Fall 2015

Demo: Danger of Resampling

downsample upsample

…

(Q: What happens with an image?)

 CMU 15-462/662, Fall 2015

But wait: we have the original mesh.
Why not just project each new sample point
onto the closest point of the original mesh?

 CMU 15-462/662, Fall 2015

Geometric Queries
Q: Given a point, in space (e.g., a new sample point), how do
we find the closest point on a given surface?
Q: Does implicit/explicit representation make this easier?
Q: Does our halfedge data structure help?
Q: What’s the cost of the naïve algorithm?
Q: How do we find the distance to a single triangle anyway?
So many questions!

p

???

 CMU 15-462/662, Fall 2015

Many types of geometric queries
Already identified need for “closest point” query
Plenty of other things we might like to know:
- Do two triangles intersect?
- Are we inside or outside an object?
- Does one object contain another?
- ...
Data structures we’ve seen so far not really designed for this...
Need some new ideas!
Today: come up with simple (read: slow) algorithms.
Next lecture: intelligent ways to accelerate geometric queries.

 CMU 15-462/662, Fall 2015

Warm up: closest point on point
Goal is to find the point on a mesh closest to a given point.
Much simpler question: given a query point (p1,p2), how do
we find the closest point on the point (a1,a2)?

(p1, p2)

(a1, a2)

Bonus question: what’s the distance?

 CMU 15-462/662, Fall 2015

Slightly harder: closest point on line
Now suppose I have a line NTx = c, where N is the unit normal
How do I find the point closest to my query point p?

p
NTx = cN

Many ways to do it:

p
p

p

p

p

p

p p p

 CMU 15-462/662, Fall 2015

Harder: closest point on line segment
Two cases: endpoint or interior
Already have basic components:
- point-to-point
- point-to-line
Algorithm?
- find closest point on line
- check if it’s between endpoints
- if not, take closest endpoint
How do we know if it’s between endpoints?
- write closest point on line as a+t(b-a)
- if t is between 0 and 1, it’s inside the segment!

a

b

 CMU 15-462/662, Fall 2015

Even harder: closest point on triangle
What are all the possibilities for the closest point?
Almost just minimum distance to three segments:

Question: what about a point inside the triangle?

 CMU 15-462/662, Fall 2015

Closest point on triangle in 3D
Not so different from 2D case
Algorithm?
- project onto plane of triangle
- use half-plane tests to classify point
- if inside the triangle, we’re done!
- otherwise, find closest point on associated vertex or edge
By the way, how do we find closest point on plane?
Same expression as closest point on a line!
E.g., p + (c - NTp) N

p

 CMU 15-462/662, Fall 2015

Closest point on triangle mesh in 3D?
Conceptually easy:
- loop over all triangles
- compute closest point to current triangle
- keep globally closest point
Q: What’s the cost? Does halfedge help?
What if we have billions of faces?
(Next time!)

 CMU 15-462/662, Fall 2015

Different query: ray-mesh intersection
A “ray” is an oriented line starting at a point
Think about a ray of light traveling from the sun
Want to know where a ray pierces a surface
Why?
- GEOMETRY: inside-outside test
- RENDERING: visibility, ray tracing
- SIMULATION: collision detection
Might pierce surface in many places!

 CMU 15-462/662, Fall 2015

Ray equation
Can express ray as

“time”
point along ray

origin unit direction

 CMU 15-462/662, Fall 2015

Intersecting a ray with an implicit surface
Recall implicit surfaces: all points x such that f(x) = 0
Q: How do we find points where a ray pierces this surface?
Well, we know all points along the ray: r(t) = o + td
Idea: replace “x” with “r” in 1st equation, and solve for t
Example: unit sphere quadratic formula:

Why two solutions?
o

d

 CMU 15-462/662, Fall 2015

Ray-plane intersection
Suppose we have a plane NTx = c
- N - unit normal
- c - offset
How do we find intersection with ray r(t) = o + td?
Key idea: again, replace the point x with the ray equation t:

Now solve for t:

And plug t back into ray equation:

 CMU 15-462/662, Fall 2015

Ray-triangle intersection
Triangle is in a plane...
Not much more to say!
- Compute ray-plane intersection
- Q: What do we do now?
- A: Why not compute barycentric coordinates of hit point?
- If barycentric coordinates are all positive, point in triangle
Actually, a lot more to say... if you care about performance!

 CMU 15-462/662, Fall 2015

Why care about performance?

Intel Embree

NVIDIA OptiX

 CMU 15-462/662, Fall 2015

Why care about performance?

“Brigade 3” real time path tracing demo

 CMU 15-462/662, Fall 2015

One more query: mesh-mesh intersection
GEOMETRY: How do we know if a mesh intersects itself?
ANIMATION: How do we know if a collision occurred?

 CMU 15-462/662, Fall 2015

Warm up: point-point intersection
Q: How do we know if p intersects a?
A: ...check if they’re the same point!

(p1, p2)

(a1, a2)

Sadly, life is not always so easy.

 CMU 15-462/662, Fall 2015

Slightly harder: point-line intersection
Q: How do we know if a point intersects a given line?
A: ...plug it into the line equation!

p
NTx = c

I promise, life isn’t always so easy.

 CMU 15-462/662, Fall 2015

Finally interesting: line-line intersection
Two lines: ax=b and cx=d
Q: How do we find the intersection?
A: See if there is a simultaneous solution
Leads to linear system:

 CMU 15-462/662, Fall 2015

Degenerate line-line intersection?
What if lines are almost parallel?
Small change in normal can lead to big change in intersection!
Instability very common, very important with geometric
predicates. Demands special care (e.g., analysis of matrix).

 CMU 15-462/662, Fall 2015

Triangle-Triangle Intersection?
Lots of ways to do it
Basic idea:
- Q: Any ideas?
- One way: reduce to edge-triangle intersection
- Check if each line passes through plane
- Then do interval test
What if triangle is moving?
- Important case for animation
- Can think of triangles as prisms in time
- Will say more when we talk about animation!

 CMU 15-462/662, Fall 2015

Up Next: Spatial Acceleration Data Strucutres
Testing every element is slow!
E.g., linearly scanning through a list vs. binary search
Can apply this same kind of thinking to geometric queries

