Lecture 3:
Transforms

Computer Graphics
CMU 15-462/15-662, Fall 2015
Cube

(-1, -1, 1) (1, -1, 1)

(-1, -1, -1) (1, -1, -1)

(1, 1, -1) (1, 1, 1)

(-1, 1, -1) (1, 1, -1)

(-1, 1, 1) (1, 1, 1)
Cube man
f transforms x to $f(x)$
Linear transforms

\[f(x + y) = f(x) + f(y) \]

\[f(ax) = af(x) \]
Scale

Uniform scale:
\[S_a(x) = ax \]

Non-uniform scale??

CMU 15-462/662, Fall 2015
Is scale a linear transform?

Yes!

\[
S_2(x) = 2x \\
aS_2(x) = 2ax \\
S_2(ax) = 2ax \\
S_2(ax) = aS_2(x)
\]

\[
S_2(x + y) = 2(x + y) \\
S_2(x) + S_2(y) = 2x + 2y \\
S_2(x + y) = S_2(x) + S_2(y)
\]
$R_\theta = \text{rotate counter-clockwise by } \theta$
Rotation as Circular Motion

\[R_\theta = \text{rotate counter-clockwise by } \theta \]

As angle changes, points move along \textit{circular} trajectories.

Hence, rotations preserve length of vectors:
\[|R_\theta(x)| = |x| \]
Is rotation linear?

Yes!
Translation

\[T_b(x) = \text{translate by } b \]

\[T_b(x) = x + b \]
Is translation linear?

No. Translation is affine.
Reflection

\[\text{Re}_y = \text{reflection about } y \]

\[\text{Re}_x = \text{reflection about } x \]
Shear (in x direction)
Compose basic transforms to construct more complex transforms

Note: order of composition matters
Top-right: scale, then translate
Bottom-right: translate, then scale
How would you perform these transformations?
Common pattern: rotation about point \(x\)

1. Step 1: translate by \(-x\)
2. Step 2: rotate
3. Step 4: translate by \(x\)
Summary of basic transforms

Linear:

- Composition of linear transform + translation
- (all examples on previous two slides)

Not linear:

- Translation

Affine:

- Composition of linear transform + translation
- (all examples on previous two slides)

Not affine: perspective projection (will discuss later)

Euclidean: (Isometries)

- Preserve distance between points (preserves length)

- "Rigid body" transforms are Euclidean transforms that also preserve "winding" (does not include reflection)
Representing Transforms
Review: representing points in a coordinate space

Consider coordinate space defined by orthogonal vectors \mathbf{e}_1 and \mathbf{e}_2

$x = 2\mathbf{e}_1 + 2\mathbf{e}_2$

$x = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$

$x = \begin{bmatrix} 0.5 \\ 1 \end{bmatrix}$ in coordinate space defined by \mathbf{e}_1 and \mathbf{e}_2, with origin at (1.5, 1)

$x = \begin{bmatrix} \sqrt{8} \\ 0 \end{bmatrix}$ in coordinate space defined by \mathbf{e}_3 and \mathbf{e}_4, with origin at (0, 0)
Review: 2D matrix multiplication

\[
\begin{bmatrix}
ax + by \\
cx + dy
\end{bmatrix}
= \begin{bmatrix} a & b \\ c & d \end{bmatrix}
\begin{bmatrix} x \\ y \end{bmatrix}
\]

\[
x \begin{bmatrix} a \\ c \end{bmatrix} + y \begin{bmatrix} b \\ d \end{bmatrix} =
\]
Linear transforms in 2D can be represented as 2x2 matrices

Consider non-uniform scale: \(S_s = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \)

Scaling amounts in each direction:
\(s = \begin{bmatrix} 0.5 & 2 \end{bmatrix}^T \)

Matrix representing scale transform:
\(S_s = \begin{bmatrix} 0.5 & 0 \\ 0 & 2 \end{bmatrix} \)
Rotation matrix (2D)

Question: what happens to (1, 0) and (0,1) after rotation by θ?

Reminder: rotation moves points along circular trajectories.

(Recall that $\cos \theta$ and $\sin \theta$ are the coordinates of a point on the unit circle.)

Answer:

\[
R_\theta(1, 0) = (\cos(\theta), \sin(\theta))
\]
\[
R_\theta(0, 1) = (\cos(\theta + \pi/2), \sin(\theta + \pi/2))
\]

Which means the matrix must look like:

\[
R_\theta = \begin{bmatrix}
\cos(\theta) & \cos(\theta + \pi/2) \\
\sin(\theta) & \sin(\theta + \pi/2)
\end{bmatrix}
\]
\[
= \begin{bmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{bmatrix}
\]
Rotation matrix (2D): another way...

\[R_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \]
Shear

Shear in x:
\[H_{xs} = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} \]

Shear in y:
\[H_{ys} = \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \]
How do we compose linear transforms?

Compose linear transforms via matrix multiplication. This example: uniform scale, followed by rotation

$$f(x) = \frac{\pi}{4} S_{[1.5,1.5]} x$$

Enables simple, efficient implementation: reduce complex chain of transforms to a single matrix multiplication.
Translation?

\[T_b(x) = x + b \]

Recall: translation is not a linear transform

→ Output coefficients are not a linear combination of input coefficients
→ Translation operation cannot be represented by a 2x2 matrix

\[
\begin{align*}
x_{\text{out}x} &= x_x + b_x \\
x_{\text{out}y} &= x_y + b_y
\end{align*}
\]

Translation math
2D homogeneous coordinates (2D-H)

Key idea: represent 2D points in 3D coordinate space

So the point \((x, y)\) is represented as the 3-vector:
\[
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}^T
\]

And transforms are represented a 3x3 matrices that transform these vectors.

For example: here are 2D scale and rotation transforms written in 2D homogeneous form:

\[
S_s = \begin{bmatrix}
S_x & 0 & 0 \\
0 & S_y & 0 \\
0 & 0 & 1
\end{bmatrix} \quad R_\theta = \begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Observe:

In these examples, the last row just propagates third coordinate of input to output.
Expressing transformations in 2D-H coords

Translation expressed as 3x3 matrix multiplication:

\[
T_b = \begin{bmatrix}
1 & 0 & b_x \\
0 & 1 & b_y \\
0 & 0 & 1
\end{bmatrix}
\]

\[
T_b x = \begin{bmatrix}
1 & 0 & b_x \\
0 & 1 & b_y \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_x \\
x_y \\
1
\end{bmatrix} = \begin{bmatrix}
x_x + b_x \\
x_y + b_y \\
1
\end{bmatrix}
\]

Homogeneous representation enables composition of affine transforms!

Example: rotation about point \(b \)

\[
T_b R_\theta T_{-b}
\]
Homogeneous coordinates: some intuition

Many points in 2D-H correspond to same point in 2D

\(x \) and \(wx \) correspond to the same 2D point
(divide by \(w \) to convert 2D-H back to 2D)

Translation is a shear in \(x \) and \(y \) in 2D-H space

\[
T_{b}x = \begin{bmatrix} 1 & 0 & b_x \\ 0 & 1 & b_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} wx_x \\ wx_y \\ w \end{bmatrix} = \begin{bmatrix} wx_x + wb_x \\ wx_y + wb_y \\ w \end{bmatrix}
\]
Homogeneous coordinates: points vs. vectors

2D-H points with $w=0$ represent 2D vectors (think: directions are points at infinity)

Unlike 2D, points and directions are distinguishable by their representation in 2D-H

Note: translation does not modify directions:

$$T_b v = \begin{bmatrix} 1 & 0 & b_x \\ 0 & 1 & b_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ 0 \end{bmatrix} = \begin{bmatrix} v_x \\ v_y \\ 0 \end{bmatrix}$$
Visualizing 2D transformations in 2D-H

Original shape in 2D can be viewed as many copies, uniformly scaled by \(w \).

2D scale \(\leftrightarrow \) scale \(x \) and \(y \); preserve \(w \) (Question: what happens to 2D shape if you scale \(x, y, \) and \(w \) uniformly?)

2D rotation \(\leftrightarrow \) rotate around \(w \)

2D translate \(\leftrightarrow \) shear in \(xy \)
Moving to 3D (and 3D-H)

Represent 3D transforms as 3x3 matrices and 3D-H transforms as 4x4 matrices

Scale:
\[
S_s = \begin{bmatrix}
S_x & 0 & 0 \\
0 & S_y & 0 \\
0 & 0 & S_z
\end{bmatrix} \quad \begin{bmatrix}
S_x & 0 & 0 & 0 \\
0 & S_y & 0 & 0 \\
0 & 0 & S_z & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Shear (in x, based on y,z position):
\[
H_{x,d} = \begin{bmatrix}
1 & d_y & d_z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} \quad H_{x,d} = \begin{bmatrix}
1 & d_y & d_z & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Translate:
\[
T_b = \begin{bmatrix}
1 & 0 & 0 & b_x \\
0 & 1 & 0 & b_y \\
0 & 0 & 1 & b_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Rotations in 3D

Rotation about x axis:

\[R_{x,\theta} = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{bmatrix} \]

Rotation about y axis:

\[R_{y,\theta} = \begin{bmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{bmatrix} \]

Rotation about z axis:

\[R_{z,\theta} = \begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix} \]
Rotation about an arbitrary axis

To rotate by θ about \mathbf{w}:

1. Form orthonormal basis around \mathbf{w} (see \mathbf{u} and \mathbf{v} in figure)

2. Rotate to map \mathbf{w} to $[0 \ 0 \ 1]$ (change in coordinate space)

$$
\mathbf{R}_{uvw} = \begin{bmatrix}
\mathbf{u}_x & \mathbf{u}_y & \mathbf{u}_z \\
\mathbf{v}_x & \mathbf{v}_y & \mathbf{v}_z \\
\mathbf{w}_x & \mathbf{w}_y & \mathbf{w}_z
\end{bmatrix}
$$

$$
\mathbf{R}_{uvw} \mathbf{u} = [1 \ 0 \ 0]
$$

$$
\mathbf{R}_{uvw} \mathbf{v} = [0 \ 1 \ 0]
$$

$$
\mathbf{R}_{uvw} \mathbf{w} = [0 \ 0 \ 1]
$$

3. Perform rotation about z: $\mathbf{R}_{z,\theta}$

4. Rotate back to original coordinate space: \mathbf{R}_{uvw}^T

$$
\mathbf{R}_{uvw}^{-1} = \mathbf{R}_{uvw}^T = \begin{bmatrix}
\mathbf{u}_x & \mathbf{v}_x & \mathbf{w}_x \\
\mathbf{u}_y & \mathbf{v}_y & \mathbf{w}_y \\
\mathbf{u}_z & \mathbf{v}_z & \mathbf{w}_z
\end{bmatrix}
$$

$$
\mathbf{R}_{w,\theta} = \mathbf{R}_{uvw}^T \mathbf{R}_{z,\theta} \mathbf{R}_{uvw}
$$
Alternative representation for rotations: complex numbers

\[z = a + bi \]

\[i^2 = -1 \]
\[(a + bi)(c + di) = (ac - bd) + (bc + ad)i \]

\[iz = i(a + bi) = -b + ai \]
(multiplication by \(i \) → rotation by \(\pi/2 \))

\[i(iz) = -a - bi = -z \]
(multiplication by \(i^2 \) → rotation by \(\pi \))

\[\mathbf{R}_\theta = e^{i\theta} = \cos \theta + i \sin \theta \]
Alternative representation for rotations: complex numbers

Quaternions are a representation of 3D rotations based on complex numbers [see further reading on web site]

\[Q = (q_v, q_w) = i q_x + j q_y + k q_z + q_w \]
Another way to think about transformations: change in coordinate space

Interpretation of transforms so far in this lecture: transforms move points

Point x moved to new position $f(x)$

Alternative interpretation:

Transformations induce of change of coordinate space: Representation of x changes since point is now described in a new coordinate space.
Review from last time: screen transform *

Convert points in normalized coordinate space to screen pixel coordinates

Example:
All points within (-1,1) to (1,1) region are on screen
(1,1) in normalized space maps to (W,0) in screen

Step 1: reflect about \(x \)
Step 2: translate by \((1,1) \)
Step 3: scale by \((W/2,H/2) \)

* Adopting convention that top-left of screen is \((0,0) \) to match SVG convention in Assignment 1.
Many 3D graphics systems like OpenGL place \((0,0) \) in bottom-left. In this case what would the transform be?
Example: simple camera transform

- Consider object in world at (10, 2, 0)
- Consider camera at (4, 2, 0), looking down x axis

- Translating object vertex positions by (-4, -2, 0) yields position relative to camera.
- Rotation about y by $-\pi/2$ gives position of object in coordinate system where camera’s view direction is aligned with the z axis *

* The convenience of such a coordinate system will become clear on the next slide!
Basic perspective projection

Desired perspective projected result (2D point):

\[p_{2D} = \begin{bmatrix} x_x / x_z & x_y / x_z \end{bmatrix}^T \]

Input: point in 3D-H

\[x = \begin{bmatrix} x_x & x_y & x_z & 1 \end{bmatrix} \]

After applying \(P \): point in 3D-H

\[Px = \begin{bmatrix} x_x & x_y & x_z & x_z \end{bmatrix}^T \]

Point in 2D-H (drop z coord)

\[P_{2D-H} = \begin{bmatrix} x_x & x_y & x_z \end{bmatrix}^T \]

Point in 2D (homogeneous divide)

\[P_{2D} = \begin{bmatrix} x_x / x_z & x_y / x_z \end{bmatrix}^T \]

Assumption:
Pinhole camera at (0,0) looking down z
Transformations summary

- Transformations can be interpreted as operations that move points in space
 - e.g., for modeling, animation

- Or as a change of coordinate system
 - e.g., screen and view transforms

- Construct complex transformations as compositions of basic transforms

- Homogeneous coordinate representation allows for expression of non-linear transforms (e.g., affine, perspective projection) as matrix operations (linear transforms) in higher-dimensional space
 - Matrix representation affords simple implementation and efficient composition